Prediction of protein-carbohydrate binding sites from protein primary sequence

Author:

Nawar Quazi Farah,Nafi Md Muhaiminul Islam,Islam Tasnim Nishat,Rahman M SaifurORCID

Abstract

AbstractA protein is a large complex macromolecule that has a crucial role in performing most of the work in cells and tissues. It is made up of one or more long chains of amino acid residues. Another important biomolecule, after DNA and protein, is carbohydrate. Carbohydrates interact with proteins to run various biological processes. Several biochemical experiments exist to learn the protein-carbohydrate interactions, but they are expensive, time consuming and challenging. Therefore developing computational techniques for effectively predicting protein-carbohydrate binding interactions from protein primary sequence has given rise to a prominent new field of research. In this study, we proposeStackCBEmbed, an ensemble machine learning model to effectively classify protein-carbohydrate binding interactions at residue level. StackCBEmbed combines traditional sequence-based features along with features derived from a pre-trained transformer-based protein language model. To the best of our knowledge, ours is the first attempt to apply protein language model in predicting protein-carbohydrate binding interactions. StackCBEmbed achieved sensitivity, specificity and balanced accuracy scores of 0.730, 0.821, 0.776 and 0.666, 0.818, 0.742 in two separate independent test sets. This performance is superior compared to the earlier prediction models benchmarked in the same datasets. We thus hope that StackCBEmbed will discover novel protein-carbohydrate interactions and help advance the related fields of research. StackCBEmbed is freely available as python scripts athttps://github.com/nafiislam/StackCBEmbed.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3