Cortistatin exerts an immunomodulatory and neuroprotective role in a preclinical model of ischemic stroke

Author:

Castillo-González JORCID,Buscemi LORCID,Vargas-Rodríguez PORCID,Serrano-Martínez IORCID,Forte-Lago IORCID,Price M,Hernández-Cortés PORCID,Hirt LORCID,González-Rey EORCID

Abstract

AbstractIschemic stroke is the result of a permanent or transient occlusion of a brain artery, leading to irreversible tissue injury and long-term sequelae. Despite ongoing advancements in revascularization techniques, stroke remains the second leading cause of death worldwide. A comprehensive understanding of the complex and interconnected mechanisms, along with the endogenous mediators that modulate stroke responses is essential for the development of effective interventions. Our study investigates cortistatin, a neuropeptide extensively distributed in the immune and central nervous systems, known for its immunomodulatory properties. With neuroinflammation and peripheral immune deregulation as key pathological features of brain ischemia, cortistatin emerges as a promising therapeutic candidate. To this aim, we evaluated its potential effect in a well-established middle cerebral artery occlusion (MCAO) preclinical stroke model. Our findings indicate that the peripheral administration of cortistatin at 24 hours post-stroke significantly reduces neurological damage and enhances recovery. Importantly, cortistatin-induced neuroprotection was multitargeted, as it modulated the glial reactivity and astrocytic scar formation, facilitated blood-brain barrier recovery, and regulated local and systemic immune dysfunction. Surprisingly, administration of cortistatin at immediate and early post-stroke time points proved to be not beneficial and even detrimental. These results emphasize the importance of understanding the spatio-temporal dynamics of stroke pathology to develop innovative therapeutic strategies. Premature interruption of certain neuroinflammatory processes might inadvertently compromise neuroprotective mechanisms. In summary, our study highlights cortistatin as a novel pleiotropic therapeutic approach against ischemic stroke, offering new treatment options for patients for whom early revascularization intervention is unsuccessful.Graphical abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3