MetaWorm: An Integrative Data-Driven Model SimulatingC. elegansBrain, Body and Environment Interactions

Author:

Zhao Mengdi,Wang Ning,Jiang Xinrui,Ma Xiaoyang,Ma Haixin,He Gan,Du Kai,Ma Lei,Huang Tiejun

Abstract

AbstractThe behavior of an organism is profoundly influenced by the complex interplay between its brain, body, and environment. Existing data-driven models focusing on either the brain or the body-environment separately. A model that integrates these two components is yet to be developed. Here, we present MetaWorm, an integrative data-driven model of a widely studied organism,C. elegans. This model consists of two sub-models: the brain model and the body & environment model. The brain model was built by multi-compartment models with realistic morphology, connectome, and neural population dynamics based on experimental data. Simultaneously, the body & environment model employed a lifelike body and a 3D physical environment, facilitating easy behavior quantification. Through the closed-loop interaction between two sub-models, MetaWorm faithfully reproduced the realistic zigzag movement towards attractors observed inC. elegans. Notably, MetaWorm is the first model to achieve seamless integration of detailed brain, body, and environment simulations, enabling unprecedented insights into the intricate relationships between neural structures, neural activities, and behaviors. Leveraging this model, we investigated the impact of neural system structure on both neural activities and behaviors. Consequently, MetaWorm can enhance our understanding of how the brain controls the body to interact with its surrounding environment.

Publisher

Cold Spring Harbor Laboratory

Reference74 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward Efficient Deep Spiking Neuron Networks: A Survey on Compression;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3