Unbiased, Cell-free Profiling of Single Influenza Genomes at High-throughput

Author:

Cowell Thomas W.,Puryear Wendy,Chen Chih-Lin,Ding Ruihua,Runstadler Jonathan,Han Hee-Sun

Abstract

AbstractThe segmented structure of the Influenza A virus (IAV) genome facilitates reassortment, segment exchange during co-infection. When divergent strains mix across human, agricultural, and wildlife reservoirs novel strains are generated, which has been the source of pandemics. Due to the limited throughput and infection-based assays, IAV reassortment studies has been limited to permissive reassortment. We have developed DE-flowSVP to achieve extremely high throughput, direct profiling of as many as 105IAV particles in a single-day experiment and enabled quantitative profiling of reassortment propensity between divergent strains for the first time. By profiling reassortants between two naturally circulating low-pathogenicity avian IAVs, we confirmed that molecular incompatibility yields strong preference toward within-strain mixing. Surprisingly, we revealed that two-to-three particle aggregation contributed primarily to genome mixing (75-99%), suggesting that aggregation mediated by sialic acid binding by viral surface proteins provides a secondary pathway to genome mixing while avoiding the co-packaging fitness cost. We showed that genome mixing is sensitively dependent on co-infection timing, relative segment abundances, and viral surface-protein background. DE-flowSVP enables large-scale survey of reassortment potential among the broad diversity of IAV strains informing pandemic strain emergence.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3