Upregulation of the Proto-Oncogene Src Kinase in Alzheimer’s Disease: From Molecular Interactions to Therapeutic Potential

Author:

Mastroeni DiegoORCID,Chan Chun Kit,Morshed Nader,Diouf David,de Ávila Camila,Suazo Crystal,Nolz Jennifer,Lopatin Ulia,Wang Qi,Serrano Geidy,Beach Thomas,Dunkley Travis,Jensen Kendall,Van Den Hove Daniel,White Forest M.,Chiu Po-Lin,Singharoy Abhishek,Reiman Eric M.,Readhead Benjamin P.

Abstract

AbstractAlzheimer’s disease (AD) is a progressive neurodegenerative disease, resulting in an irreversible deterioration of multiple brain regions associated with cognitive dysfunction. Phosphorylation of the microtubule-associated protein, Tau, is known to occur decades before symptomatic AD. The Src family of tyrosine kinases are known to phosphorylate select tyrosine sites on Tau and promote microtubule disassembly and subsequent neurofibrillary tangle (NFT) formation. Our data show that the proto-oncogene, non-receptor tyrosine kinase Src colocalizes with a range of late (PHF1) to early (MC1) AD-associated phosphorylated Tau epitopes. The strongest co-occurrence is seen with MC1 (probability of MC1 given Src =100%), an early AD-specific conformational dependent epitope. Single-cell RNA sequencing data of 101 subjects show thatSrcis upregulated in both AD inhibitory and excitatory neurons. The most significantly affected, by orders of magnitude, were excitatory neurons which are the most prone to pathological Tau accumulation. We measured Src phosphorylation by mass spectrometry across a cohort of 48 patient neocortical tissues and found that Src has increased phosphorylation on Ser75, Tyr187, and Tyr440 in AD, showing that Src kinase undergoes distinct phosphorylation alterations in AD. Through Brownian dynamics simulations of Src and Tau, we show that as Tau undergoes the transition into disease-associated paired helical filaments, there is a notable seven-fold increase in Src contact with Tau. These results collectively emphasize Src kinase’s central role in Tau phosphorylation and its close association with Tau epitopes, presenting a promising target for potential therapeutic intervention.

Publisher

Cold Spring Harbor Laboratory

Reference63 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3