Abstract
SUMMARYALS and FTD are complex neurodegenerative disorders that primarily affects motor neurons in the brain and spinal cord, and cortical neurons in the frontal lobe. Although the pathogenesis of ALS/FTD is unclear, recent research spotlights nucleocytoplasmic transport impairment, DNA damage, and nuclear abnormalities as drivers of neuronal death. In this study, we show that loss of nuclear envelope (NE) integrity is a key pathology associated with nuclear pore complex (NPC) injury inC9ORF72mutant neurons. Importantly, we show that mechanical stresses generated by cytoskeletal forces on the NE can lead to NPC injury, loss of nuclear integrity, and accumulation of DNA damage. Importantly, we demonstrate that restoring NE tensional homeostasis, by disconnecting the nucleus from the cytoskeleton, can rescue NPC injury and reduce DNA damage inC9ORF72mutant cells. Together, our data suggest that modulation of NE homeostasis and repair may represent a novel and promising therapeutic target for ALS/FTD.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献