USE OF MACHINE LEARNING TO PREDICT INDIVIDUAL POSTPRANDIAL GLYCEMIC RESPONSES TO FOOD AMONG INDIVIDUALS WITH TYPE 2 DIABETES IN INDIA

Author:

Choudhry Niteesh K.,Priyadarshini Shweta,Swamy Jaganath,Mehta Mridul

Abstract

ABSTRACTBackgroundType 2 diabetes (DM2) is a leading cause of premature morbidity and mortality globally and affects more than 100 million people in the world’s most populous country, India. Nutrition is a critical and evidence-based component of effective blood sugar control and most dietary advice emphasizes carbohydrate and calorie reduction. Emerging global evidence demonstrates marked inter-individual differences in post-prandial glucose response (PPGR) although no such data exists in India and prior studies have primarily evaluated PPGR variation in individuals without diabetes.MethodsThis prospective cohort study seeks to characterize the PPGR variability in Indians with diabetes and to identify factors associated with these differences. Adults with type 2 diabetes and a hemoglobin A1c ≥7 are being enrolled from 14 sites around India. Subjects wear a continuous glucose monitor, eat a series of standardized meals, and record all free-leaving foods, activities, and medication use for a 14-day period. The study’s primary outcome is PPGR, calculated as the incremental area under the curve 2 hours after each logged meal.DiscussionThis study will provide the first large scale examination variability in blood sugar responses to food in India and will be among the first to estimate PPGR variability for individuals with DM2 in any jurisdiction. Results from our study will generate data to facilitate the creation of machine learning models to predict individual PPGR responses and to facilitate the prescription of personalized diets for individuals with DM2.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3