Retrieval Augmented Generation Enabled Generative Pre-Trained Transformer 4 (GPT-4) Performance for Clinical Trial Screening

Author:

Unlu Ozan,Shin Jiyeon,Mailly Charlotte J,Oates Michael F,Tucci Michela R,Varugheese Matthew,Wagholikar Kavishwar,Wang Fei,Scirica Benjamin M,Blood Alexander J,Aronson Samuel J

Abstract

ABSTRACTBackgroundSubject screening is a key aspect of all clinical trials; however, traditionally, it is a labor-intensive and error-prone task, demanding significant time and resources. With the advent of large language models (LLMs) and related technologies, a paradigm shift in natural language processing capabilities offers a promising avenue for increasing both quality and efficiency of screening efforts. This study aimed to test the Retrieval-Augmented Generation (RAG) process enabled Generative Pretrained Transformer Version 4 (GPT-4) to accurately identify and report on inclusion and exclusion criteria for a clinical trial.MethodsThe Co-Operative Program for Implementation of Optimal Therapy in Heart Failure (COPILOT-HF) trial aims to recruit patients with symptomatic heart failure. As part of the screening process, a list of potentially eligible patients is created through an electronic health record (EHR) query. Currently, structured data in the EHR can only be used to determine 5 out of 6 inclusion and 5 out of 17 exclusion criteria. Trained, but non-licensed, study staff complete manual chart review to determine patient eligibility and record their assessment of the inclusion and exclusion criteria. We obtained the structured assessments completed by the study staff and clinical notes for the past two years and developed a workflow of clinical note-based question answering system powered by RAG architecture and GPT-4 that we named RECTIFIER (RAG-Enabled Clinical Trial Infrastructure for Inclusion Exclusion Review). We used notes from 100 patients as a development dataset, 282 patients as a validation dataset, and 1894 patients as a test set. An expert clinician completed a blinded review of patients’ charts to answer the eligibility questions and determine the “gold standard” answers. We calculated the sensitivity, specificity, accuracy, and Matthews correlation coefficient (MCC) for each question and screening method. We also performed bootstrapping to calculate the confidence intervals for each statistic.ResultsBoth RECTIFIER and study staff answers closely aligned with the expert clinician answers across criteria with accuracy ranging between 97.9% and 100% (MCC 0.837 and 1) for RECTIFIER and 91.7% and 100% (MCC 0.644 and 1) for study staff. RECTIFIER performed better than study staff to determine the inclusion criteria of “symptomatic heart failure” with an accuracy of 97.9% vs 91.7% and an MCC of 0.924 vs 0.721, respectively. Overall, the sensitivity and specificity of determining eligibility for the RECTIFIER was 92.3% (CI) and 93.9% (CI), and study staff was 90.1% (CI) and 83.6% (CI), respectively.ConclusionGPT-4 based solutions have the potential to improve efficiency and reduce costs in clinical trial screening. When incorporating new tools such as RECTIFIER, it is important to consider the potential hazards of automating the screening process and set up appropriate mitigation strategies such as final clinician review before patient engagement.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3