Graphene microelectrode arrays, 4D structured illumination microscopy, and a machine learning-based spike sorting algorithm permit the analysis of ultrastructural neuronal changes during neuronal signalling in a model of Niemann-Pick disease type C

Author:

Lu Meng,Hui Ernestine,Brockhoff Marius,Trauble Jakob,Fernandez-Villegas Ana,Burton Oliver J,Lamb Jacob,Ward Edward,Hooper Philippa J,Tadbier Wadood,Laubli Nino FORCID,Hofmann Stephan,Kaminski Clemens FORCID,Lombardo Antonio,Kaminski Schierle Gabriele S

Abstract

AbstractSimultaneously recording network activity and ultrastructural changes of the synapse is essential for advancing our understanding of the basis of neuronal functions. However, the rapid millisecond-scale fluctuations in neuronal activity and the subtle sub-diffraction resolution changes of synaptic morphology pose significant challenges to this endeavour. Here, we use graphene microelectrode arrays (G-MEAs) to address these challenges, as they are compatible with high spatial resolution imaging across various scales as well as high temporal resolution electrophysiological recordings. Furthermore, alongside G-MEAs, we deploy an easy-to-implement machine learning-based algorithm to efficiently process the large datasets collected from MEA recordings. We demonstrate that the combined use of G-MEAs, machine learning (ML)-based spike analysis, and four-dimensional (4D) structured illumination microscopy (SIM) enables the monitoring of the impact of disease progression on hippocampal neurons which have been treated with an intracellular cholesterol transport inhibitor mimicking Niemann-Pick disease type C (NPC) and show that synaptic boutons, compared to untreated controls, significantly increase in size, which leads to a loss in neuronal signalling capacity.

Publisher

Cold Spring Harbor Laboratory

Reference63 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3