Abstract
1AbstractIsothermal amplification-based methods for pathogen DNA or RNA detection offer high sensitivity, rapid detection, and the potential for deployment in remote fields and home testing. Consequently, they are emerging as alternatives to PCR and saw a surge in research activity and deployment for the rapid detection of SARS-CoV-2 during the Covid-19 pandemic. The most common isothermal DNA detection methods rely on minimal reagents for DNA amplification and simple hardware that can maintain isothermal conditions and read-out a fluorescent or colorimetric signal. Many researchers globally are working on improving these components based on diverse end-user needs. In this work, we have recognized the need for an open-source hardware device for isothermal amplification, composed of off-the-shelf components that are easily accessible in any part of the world, is easily manufacturable in a distributed and scalable way using 3D printing, and that can be powered using a wide diversity of batteries and power sources. We demonstrate the easy assembly of our device design and demonstrate its efficacy using colorimetric LAMP for both RNA and DNA targets.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献