Identification of robust cellular programs using reproducible LDA that impact sex-specific disease progression in different genotypes of a mouse model of AD

Author:

Rezaie NargesORCID,Rebboah ElisabethORCID,Williams Brian A.,Liang Heidi YahanORCID,Reese FairlieORCID,Balderrama-Gutierrez GabrielaORCID,Dionne Louise A.,Reinholdt LauraORCID,Trout DianeORCID,Wold Barbara J.ORCID,Mortazavi AliORCID

Abstract

The gene expression profiles of distinct cell types reflect complex genomic interactions among multiple simultaneous biological processes within each cell that can be altered by disease progression as well as genetic background. The identification of these active cellular programs is an open challenge in the analysis of single-cell RNA-seq data. Latent Dirichlet Allocation (LDA) is a generative method used to identify recurring patterns in counts data, commonly referred to as topics that can be used to interpret the state of each cell. However, LDA’s interpretability is hindered by several key factors including the hyperparameter selection of the number of topics as well as the variability in topic definitions due to random initialization. We developed Topyfic, a Reproducible LDA (rLDA) package, to accurately infer the identity and activity of cellular programs in single-cell data, providing insights into the relative contributions of each program in individual cells. We apply Topyfic to brain single-cell and single-nucleus datasets of two 5xFAD mouse models of Alzheimer’s disease crossed with C57BL6/J or CAST/EiJ mice to identify distinct cell types and states in different cell types such as microglia. We find that 8-month 5xFAD/Cast F1 males show higher level of microglial activation than matching 5xFAD/BL6 F1 males, whereas female mice show similar levels of microglial activation. We show that regulatory genes such as TFs, microRNA host genes, and chromatin regulatory genes alone capture cell types and cell states. Our study highlights how topic modeling with a limited vocabulary of regulatory genes can identify gene expression programs in singlecell data in order to quantify similar and divergent cell states in distinct genotypes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3