PI3K-dependant reprogramming of hexokinase isoforms controls glucose metabolism and functional responses of B lymphocytes

Author:

Paradoski Brandon T,Hou Sen,Mejia Edgard M,Olayinka-Adefemi Folayemi,Fowke Danielle,Hatch Grant M,Saleem AyeshaORCID,Banerji Versha,Hay Nissim,Zeng HuORCID,Marshall Aaron JORCID

Abstract

AbstractB lymphocyte metabolic reprogramming is essential for B cell differentiation and mounting a healthy immune response. The PI3K signaling pathway regulates B cell metabolism, but the mechanisms involved are not well understood. Here we report that signaling via PI3K8 can impact B cell glucose metabolism and immune functions via selective upregulation of hexokinase 2 (HK2). Three HK enzymes can catalyze the critical first step for glucose utilization and may selectively direct glucose into specific catabolic and anabolic pathways. While HK1 is constitutively expressed in B cells, HK2 is strikingly upregulated during B cell activation in a PI3K8-dependent manner. HK2 shows a unique distribution between mitochondrial and cytoplasmic pools that is also regulated by PI3K. Genetic deletion of HK2 significantly impairs extracellular acidification rate and glycolytic ATP production despite strong expression of HK1. B cell-specific deletion of HK2 in mice caused mild perturbations in B cell development but did not prevent generation of mature B cell subsets. HK2-deficient B cells show altered functional responsesin vitroand evidence of metabolic adaptation to become less dependent on glucose and more dependent on glutamine. HK2-deficient B cells exhibit impaired glycolysis, altered metabolite profiles and altered flux of labeled glucose carbons into the pentose phosphate pathway. Upon immunization, HK2-deficient mice exhibit impaired generation of germinal centre B cells, plasmablasts and antibody responses. We further found that HK2 expression in primary human chronic lymphocytic leukemia (CLL) cells was associated with recent proliferation and could be reduced by PI3K inhibition. Our study identifies hexokinase 2 upregulation as a functionally important component of B cell metabolic reprogramming dependent on the PI3K pathway.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3