Profiling of linear B-cell epitopes against human coronaviruses in pooled sera sampled early in the COVID-19 pandemic

Author:

Bach EmilORCID,Ghanizada MustafaORCID,Kirkby Nikolaj,Buus SørenORCID,Østerbye ThomasORCID

Abstract

AbstractBackgroundAntibodies play a key role in the immune defence against infectious pathogens. Understanding the underlying process of B cell recognition is not only of fundamental interest; it supports important applications within diagnostics and therapeutics. Whereas the nature of conformational B cell epitope recognition is inherently complicated, linear B cell epitopes offer a straightforward approach that potentially can be reduced to one of peptide recognition.MethodsUsing an overlapping peptide approach representing the entire proteomes of the seven main coronaviruses known to infect humans, we analysed sera pooled from eight PCR-confirmed COVID-19 convalescents and eight pre-pandemic controls. Using a high-density peptide microarray platform, 13-mer peptides overlapping by 11 amino acids were in situ synthesised and incubated with the pooled primary serum samples, followed by development with secondary fluorochrome-labelled anti-IgG and -IgA antibodies. Interactions were detected by fluorescence detection. Strong Ig interactions encompassing consecutive peptides were considered to represent “high-fidelity regions” (HFRs). These were mapped to the coronavirus proteomes using a 60% homology threshold for clustering.ResultsWe identified 333 human coronavirus derived HFRs. Among these, 98 (29%) mapped to SARS-CoV-2, 144 (44%) mapped to one or more of the four circulating common cold coronaviruses (CCC), and 54 (16%) cross-mapped to both SARS-CoV-2 and CCCs. The remaining 37 (11%) mapped to either SARS-CoV or MERS-CoV. Notably, the COVID-19 serum was skewed towards recognising SARS-CoV-2-mapped HFRs, whereas the pre-pandemic was skewed towards recognising CCC-mapped HFRs. In terms of absolute numbers of linear B cell epitopes, the primary targets are the ORF1ab protein (60%), the spike protein (21%), and the nucleoprotein (15%) in that order; however, in terms of epitope density the order would be reversed.ConclusionWe identified linear B cell epitopes across coronaviruses, highlighting pan-, alpha-, beta-, or SARS-CoV-2-corona-specific B cell recognition patterns. These findings could be pivotal in deciphering past and current exposures to epidemic and endemic coronavirus. Moreover, our results suggest that pre-pandemic anti-CCC antibodies may cross-react against SARS-CoV-2, which could explain the highly variable outcome of COVID-19. Finally, the methodology used here offers a rapid and comprehensive approach to high-resolution linear B-cell epitope mapping, which could be vital for future studies of emerging infectious diseases.

Publisher

Cold Spring Harbor Laboratory

Reference108 articles.

1. Johns Hopkins Center for Systems Science and Engineering (CSSE). COVID-19 Map - Johns Hopkins Coronavirus Resource Center. Published October 31, 2023. Accessed 10, 2023. https://coronavirus.jhu.edu/map.html

2. RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak

3. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses

4. Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses

5. An overview on the seven pathogenic human coronaviruses

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3