Abstract
AbstractBackgroundAntibodies play a key role in the immune defence against infectious pathogens. Understanding the underlying process of B cell recognition is not only of fundamental interest; it supports important applications within diagnostics and therapeutics. Whereas the nature of conformational B cell epitope recognition is inherently complicated, linear B cell epitopes offer a straightforward approach that potentially can be reduced to one of peptide recognition.MethodsUsing an overlapping peptide approach representing the entire proteomes of the seven main coronaviruses known to infect humans, we analysed sera pooled from eight PCR-confirmed COVID-19 convalescents and eight pre-pandemic controls. Using a high-density peptide microarray platform, 13-mer peptides overlapping by 11 amino acids were in situ synthesised and incubated with the pooled primary serum samples, followed by development with secondary fluorochrome-labelled anti-IgG and -IgA antibodies. Interactions were detected by fluorescence detection. Strong Ig interactions encompassing consecutive peptides were considered to represent “high-fidelity regions” (HFRs). These were mapped to the coronavirus proteomes using a 60% homology threshold for clustering.ResultsWe identified 333 human coronavirus derived HFRs. Among these, 98 (29%) mapped to SARS-CoV-2, 144 (44%) mapped to one or more of the four circulating common cold coronaviruses (CCC), and 54 (16%) cross-mapped to both SARS-CoV-2 and CCCs. The remaining 37 (11%) mapped to either SARS-CoV or MERS-CoV. Notably, the COVID-19 serum was skewed towards recognising SARS-CoV-2-mapped HFRs, whereas the pre-pandemic was skewed towards recognising CCC-mapped HFRs. In terms of absolute numbers of linear B cell epitopes, the primary targets are the ORF1ab protein (60%), the spike protein (21%), and the nucleoprotein (15%) in that order; however, in terms of epitope density the order would be reversed.ConclusionWe identified linear B cell epitopes across coronaviruses, highlighting pan-, alpha-, beta-, or SARS-CoV-2-corona-specific B cell recognition patterns. These findings could be pivotal in deciphering past and current exposures to epidemic and endemic coronavirus. Moreover, our results suggest that pre-pandemic anti-CCC antibodies may cross-react against SARS-CoV-2, which could explain the highly variable outcome of COVID-19. Finally, the methodology used here offers a rapid and comprehensive approach to high-resolution linear B-cell epitope mapping, which could be vital for future studies of emerging infectious diseases.
Publisher
Cold Spring Harbor Laboratory