Co-expression of the AsCas12a ultra variant, a T7 RNA Polymerase and a cytosine base editor greatly increases transfection and editing rates inLeishmaniaspecies

Author:

May Nicole Herrmann,Schmid Annika,Meiser Elisabeth,Beneke TomORCID

Abstract

ABSTRACTThe ability to analyse the function of all genes in a genome has obvious appeal. However, this has been challenging inLeishmaniadue to a repetitive genome architecture, limited DNA repair mechanisms and the absence of RNA interference machinery in most species. While our previous introduction of a cytosine base editor (CBE) tool inLeishmaniashowcased the potential for bypassing these limits (Engstler and Beneke (2023)), challenges remained in achieving high transfection efficiencies, overcoming species-specific editing rates, minimizing effects on parasite growth and eliminating competition between deleterious and non-deleterious mutations. Here, we present an optimized approach to address these limitations. Firstly, we identified a T7 RNAP promoter variant that ensures high editing rates acrossLeishmaniaspecies without adversely affecting parasite growth. Secondly, we adjusted the scoring of CBE single-guide RNAs (sgRNAs) to prioritize those ensuring STOP codon generation. Thirdly, we developed a triple-expression construct enabling the integration of CBE sgRNA expression cassettes into aLeishmaniasafe harbor locus via AsCas12a ultra-mediated DNA double-strand breaks. This facilitates the generation of stable CBE sgRNA expression cell lines and increases transfection rates by ∼400-fold, resulting in up to one transfectant per 70 transfected cells. Lastly, we show how the co-expression of AsCas12a ultra, T7 RNAP and CBE can be utilized for hybrid CRISPR gene replacement and base editing approaches in the same cell line. Overall, we believe that these improvements will broaden the range of possible gene editing applications inLeishmaniaspecies and will enable a variety of loss-of-function screens in the future.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3