Evoked Resonant Neural Activity Long-Term Dynamics can be Reproduced by a Computational Model with Vesicle Depletion

Author:

Sermon James J.,Wiest ChristophORCID,Tan Huiling,Denison Timothy,Duchet BenoitORCID

Abstract

AbstractSubthalamic deep brain stimulation (DBS) robustly generates high-frequency oscillations known as evoked resonant neural activity (ERNA). Recently the importance of ERNA has been demonstrated through its ability to predict the optimal DBS contact in the subthalamic nucleus in patients with Parkinson’s disease. However, the underlying mechanisms of ERNA are not well understood, and previous modelling efforts have not managed to reproduce the wealth of published data describing the dynamics of ERNA. Here, we therefore aim to present a minimal model capable of reproducing the characteristics of the slow ERNA dynamics published to date. We make biophysically-motivated modifications to the Kuramoto model and fit its parameters to the slow dynamics of ERNA obtained from data. We further validate the model against experimental data from Parkinson’s disease patients by simulating variable stimulation and medication states, as well as the response of individual neurons. Our results demonstrate that it is possible to reproduce the slow dynamics of ERNA with a single neuronal population, and, crucially, with vesicle depletion as the key mechanism behind the ERNA frequency decay. We provide a series of predictions from the model that could be the subject of future studies for further validation.Author SummaryERNA is a high amplitude response to stimulation of deep brain structures, with a frequency over twice that of the frequency of stimulation. While the underlying mechanisms of ERNA are still unclear, recent findings have demonstrated its importance as the best indicator of which stimulation contact to select for DBS therapy in patients with Parkinson’s disease. Previous modelling studies of ERNA focus on the immediate responses to stimulation (<200ms) and rely on interconnected neural structures and delays. Our work shows that the long-term (on the scale of one or more seconds) ERNA response to continuous stimulation can be modelled using a single neural structure. The proposed model also captures the long-term frequency and amplitude characteristics of ERNA with variable stimulation and medication paradigms. The key features of the model, in particular the depletion of vesicles carrying neurotransmitters between neurons by high-frequency stimulation, may provide insights into the underlying mechanisms of ERNA and inform future investigations into this neural response.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3