MaizeCODE reveals bi-directionally expressed enhancers that harbor molecular signatures of maize domestication

Author:

Cahn JonathanORCID,Regulski Michael,Lynn Jason,Ernst Evan,Alves Cristiane de Santis,Ramakrishnan Srividya,Chougule Kapeel,Wei Sharon,Lu Zhenyuan,Xu Xiaosa,Drenkow Jorg,Kramer Melissa,Seetharam Arun,Hufford Matthew B.,McCombie W. Richard,Ware Doreen,Jackson David,Schatz Michael C.,Gingeras Thomas R.,Martienssen Robert A.

Abstract

AbstractModern maize was domesticated fromTeosinte parviglumis, with subsequent introgressions fromTeosinte mexicana, yielding increased kernel row number, loss of the hard fruit case and dissociation from the cob upon maturity, as well as fewer tillers. Molecular approaches have identified several transcription factors involved in the development of these traits, yet revealed that a complex regulatory network is at play. MaizeCODE deploys ENCODE strategies to catalog regulatory regions in the maize genome, generating histone modification and transcription factor ChIP-seq in parallel with transcriptomics datasets in 5 tissues of 3 inbred lines which span the phenotypic diversity of maize, as well as the teosinte inbred TIL11. Integrated analysis of these datasets resulted in the identification of a comprehensive set of regulatory regions in each inbred, and notably of distal enhancers which were differentiated from gene bodies by their lack of H3K4me1. Many of these distal enhancers expressed non- coding enhancer RNAs bi-directionally, reminiscent of “super enhancers” in animal genomes. We show that pollen grains are the most differentiated tissue at the transcriptomic level, and share features with endosperm that may be related to McClintock’s chromosome breakage- fusion-bridge cycle. Conversely, ears have the least conservation between maize and teosinte, both in gene expression and within regulatory regions, reflecting conspicuous morphological differences selected during domestication. The identification of molecular signatures of domestication in transcriptional regulatory regions provides a framework for directed breeding strategies in maize.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3