Low-dimensional interference of mid-level sound statistics predicts human speech recognition in natural environmental noise

Author:

Clonan Alex C.ORCID,Zhai XiuORCID,Stevenson Ian H.ORCID,Escabí Monty A.ORCID

Abstract

AbstractRecognizing speech in noise, such as in a busy street or restaurant, is an essential listening task where the task difficulty varies across acoustic environments and noise levels. Yet, current cognitive models are unable to account for changing real-world hearing sensitivity. Here, using natural and perturbed background sounds we demonstrate that spectrum and modulations statistics of environmental backgrounds drastically impact human word recognition accuracy and they do so independently of the noise level. These sound statistics can facilitate or hinder recognition – at the same noise level accuracy can range from 0% to 100%, depending on the background. To explain this perceptual variability, we optimized a biologically grounded hierarchical model, consisting of frequency-tuned cochlear filters and subsequent mid-level modulation-tuned filters that account for central auditory tuning. Low-dimensional summary statistics from the mid-level model accurately predict single trial perceptual judgments, accounting for more than 90% of the perceptual variance across backgrounds and noise levels, and substantially outperforming a cochlear model. Furthermore, perceptual transfer functions in the mid-level auditory space identify multi-dimensional natural sound features that impact recognition. Thus speech recognition in natural backgrounds involves interference of multiple summary statistics that are well described by an interpretable, low-dimensional auditory model. Since this framework relates salient natural sound cues to single trial perceptual judgements, it may improve outcomes for auditory prosthetics and clinical measurements of real-world hearing sensitivity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3