The Ecology of Human Sleep (EcoSleep) Project: Protocol for a longitudinal cohort repeated-measurement-burst study to assess the relationship between sleep determinants and sleep outcomes under real-world conditions across time of year

Author:

Biller Anna MORCID,Fatima NayabORCID,Hamberger ChrysanthORCID,Hainke LauraORCID,Plankl VerenaORCID,Nadeem AmnaORCID,Kramer AchimORCID,Hecht MartinORCID,Spitschan ManuelORCID

Abstract

AbstractIntroductionThe interplay of daily life factors, including mood, physical activity, or light exposure, influences sleep architecture and quality. Laboratory-based studies often isolate these determinants to establish causality, thereby sacrificing ecological validity. Furthermore, little is known about time-of-year changes in sleep and circadian-related variables at high resolution, including the magnitude of individual change across time of year under real-world conditions.ObjectivesThis study investigates the combined impact of sleep determinants on individuals’ daily sleep episodes to elucidate which waking events modify sleep patterns. A second goal is to describe high-resolution individual sleep and circadian-related changes across the year to understand intra- and interindividual variability.Methods and analysisThis study is a prospective cohort study with a measurement-burst design. Healthy adults aged 18-35 (N= 12) will be enrolled for 12 months. Participants will continuously wear actimeters and pendant-attached light loggers. A subgroup will also measure interstitial fluid glucose levels (n= 6). Every four weeks, all participants will undergo three consecutive measurement days of four ecological momentary assessments each day (“bursts”) to sample sleep determinants during wake. Participants will also continuously wear temperature loggers (iButtons) during the bursts. Body weight will be captured before and after the bursts, and visual function will be tested in the laboratory. The bursts are separated by two at-home electroencephalogram (EEG) recordings each night. Circadian phase and amplitude will be determined during the bursts from hair follicles, and habitual melatonin onset will be derived through saliva sampling. Environmental parameters (bedroom temperature, humidity, and air pressure) will be recorded continuously.Ethics and disseminationThe Ethics Committee of the Technical University of Munich approved this study (#2023-653-S-SB). We adhere to research standards including the Declaration of Helsinki and open science principles. Results will be made available as future peer-reviewed publications and contributions to conferences.Article summary – Strengths and LimitationsThis study investigates human sleep in the natural environment across 12 months incorporating multi-domain sleep determinants to understand their combined contribution to the subsequent sleep episode.The study integrates novel and state-of-the art data collection methods, including wearable at-home EEG, continuous glucose measurement (CGM) and personalised light logging, as well as hair follicle-derived circadian amplitude and phase.The study focuses on longitudinal and high-resolution intra-individual data (N= 12) going beyond sparse resolution. Assessments include home-based EEG recordings twice per month, monthly circadian phase and amplitude assessment, 3-days of four daily ecological momentary assessment per month, and continuous actimetry, continuous light logging and continuous bedroom temperature/humidity/air pressure monitoring.Due to the lack of experimental manipulations, drawing direct causal inferences from the data will not be possible.The participant burden to generate the within-subject data is high due to the intensive sampling and long participation duration.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3