Binding Position Dependent Modulation of Smoothened Activity by Cyclopamine

Author:

Kim Kihong,Bansal Prateek D.,Shukla DiwakarORCID

Abstract

AbstractCyclopamine is a natural alkaloid that is known to act as an agonist when it binds to the Cysteine Rich Domain (CRD) of the Smoothened receptor and as an antagonist when it binds to the Transmembrane Domain (TMD). To study the effect of cyclopamine binding to each binding site experimentally, mutations in the other site are required. Hence, simulations are critical for understanding the WT activity due to binding at different sites. Additionally, there is a possibility that cyclopamine could bind to both sites simultaneously especially at high concentration, the implications of which remain unknown. We performed three independent sets of simulations to observe the receptor activation with cyclopamine bound to each site independently (CRD, TMD) and bound to both sites simultaneously. Using multi-milliseconds long aggregate MD simulations combined with Markov state models and machine learning, we explored the dynamic behavior of cyclopamine’s interactions with different domains of WT SMO. A higher population of the active state at equilibrium, a lower activation free energy barrier of2 kcal/mol, and expansion of the hydrophobic tunnel to facilitate cholesterol transport agrees with the cyclopamine’s agonistic behavior when bound to the CRD of SMO. A higher population of the inactive state at equilibrium, a higher free energy barrier of4 kcal/mol and restricted the hydrophobic tunnel to impede cholesterol transport showed cyclopamine’s antagonistic behavior when bound to TMD. With cyclopamine bound to both sites, there was a slightly larger inactive population at equilibrium and an increased free energy barrier (3.5 kcal/mol). The tunnel was slightly larger than when solely bound to TMD, and showed a balance between agonism and antagonism with respect to residue movements exhibiting an overall weak antagonistic effect.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3