Abstract
ABSTRACTA central challenge for the brain is how to combine separate sources of information from different sensory modalities to optimally represent objects and events in the external world, such as combining someone’s speech and lip movements to better understand them in a noisy environment. At the level of individual neurons, audiovisual stimuli often elicit super-additive interactions, where the neural response is greater than the sum of auditory and visual responses. However, investigations using electroencephalography (EEG) to record brain activity have revealed inconsistent interactions, with studies reporting a mix of super- and sub-additive effects. A possible explanation for this inconsistency is that standard univariate analyses obscure multisensory interactions present in EEG responses by overlooking multivariate changes in activity across the scalp. To address this shortcoming, we investigated EEG responses to audiovisual stimuli using inverted encoding, a population tuning approach that uses multivariate information to characterise feature-specific neural activity. Participants (n = 41) completed a spatial localisation task for both unisensory stimuli (auditory clicks, visual flashes) and combined audiovisual stimuli (spatiotemporally congruent clicks and flashes). To assess multivariate changes in EEG activity, we used inverted encoding to recover stimulus location information from event-related potentials (ERPs). Participants localised audiovisual stimuli more accurately than unisensory stimuli alone. For univariate ERP analyses we found an additive multisensory interaction. By contrast, multivariate analyses revealed a super-additive interaction ∼180 ms following stimulus onset, such that the location of audiovisual stimuli was decoded more accurately than that predicted by maximum likelihood estimation. Our results suggest that super-additive integration of audiovisual information is reflected within multivariate patterns of activity rather than univariate evoked responses.
Publisher
Cold Spring Harbor Laboratory