Downscaling mutualistic networks from species to individuals reveals consistent interaction niches and roles within plant populations

Author:

Quintero ElenaORCID,Arroyo-Correa BlancaORCID,Isla JorgeORCID,Rodríguez-Sánchez FranciscoORCID,Jordano PedroORCID

Abstract

AbstractSpecies-level networks emerge as the combination of interactions spanning multiple individuals, and their study has received considerable attention over the past 30 years. However, less is known about the structure of individual interaction configurations within species, being the fundamental scale at which ecological interactions occur in nature.We compiled 46 empirical, individual-based, interaction networks on plant-animal seed dispersal mutualisms, comprising 1037 plant individuals across 29 species from various regions. We compare the structure of individual-based networks to that of species-based networks and, by extending the niche concept to interaction assemblages, we explore individual plant specialization. Using a Bayesian framework to account for uncertainty derived from sampling, we examine how plant individuals “explore” the interaction niche of their population.Both individual-based and species-based networks exhibited high variability in network properties, lacking remarkable structural and topological differences between them. Within populations, frugivores’ interaction allocation among plant individuals was highly heterogeneous, with one to three frugivore species dominating interactions. Regardless of species or bioregion, plant individuals displayed a variety of interaction profiles across populations, with a consistently small percentage of individuals playing a central role and exhibiting high diversity in their interaction assemblage. Plant populations showed varying mid to low levels of niche specialization; on average individuals’ interaction niche “breadth” accounted for 70% of the interaction diversity.Our results emphasize the importance of downscaling from species to individual-based networks to understand the structuring of interactions within ecological communities and provide an empirical basis for the extension of niche theory to complex mutualistic networks.Significance StatementEcological interactions in nature occur between individual partners rather than species, and their outcomes determine fitness variation. By examining among-individual variation in interaction niches, we can bridge evolutionary and ecological perspectives to understand interaction biodiversity. This study investigates individual plant variation in frugivore assemblages worldwide, exploring how plant individuals “build” their interaction profiles with animal frugivores. The structure of networks composed of individuals was surprisingly similar to networks composed of species. Within populations, only a few plants played a key role in attracting a high diversity of frugivores, making them central to the overall network structure. Individuals actually explored a substantial diversity of partners, with individual interaction “breadth” accounting for up to 70% of total interaction diversity on average.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3