Author:
Cheng Chih-Jen,Nizar Jonathan M,Dai Dao-Fu,Huang Chou-Long
Abstract
AbstractRenal tubules are featured with copious mitochondria and robust transport activity. Mutations in mitochondrial genes cause congenital renal tubulopathies, and changes in transport activity affect mitochondrial morphology, suggesting mitochondrial function and transport activity are tightly coupled. Current methods of using bulk kidney tissues or cultured cells to study mitochondrial bioenergetics are limited. Here, we optimized an extracellular flux analysis (EFA) to study mitochondrial respiration and energy metabolism using microdissected mouse renal tubule segments. EFA detects mitochondrial respiration and glycolysis by measuring oxygen consumption and extracellular acidification rates, respectively. We show that both measurements positively correlate with sample sizes of a few centimeter-length renal tubules. The thick ascending limbs (TALs) and distal convoluted tubules (DCTs) predominantly utilize glucose/pyruvate as energy substrates, whereas proximal tubules (PTs) are significantly much less so. Acute inhibition of TALs’ transport activity by ouabain treatment reduces basal and ATP-linked mitochondrial respiration. Chronic inhibition of transport activity by 2-week furosemide treatment or deletion of with-no-lysine kinase 4 (Wnk4) decreases maximal mitochondrial capacity. In addition, chronic inhibition downregulates mitochondrial DNA mass and mitochondrial length/density in TALs and DCTs. Conversely, gain-of-function Wnk4 mutation increases maximal mitochondrial capacity and mitochondrial length/density without increasing mitochondrial DNA mass. In conclusion, EFA is a sensitive and reliable method to investigate mitochondrial functions in isolated renal tubules. Transport activity tightly regulates mitochondrial bioenergetics and biogenesis to meet the energy demand in renal tubules. The system allows future investigation into whether and how mitochondria contribute to tubular remodeling adapted to changes in transport activity.Key pointsA positive correlation between salt reabsorption and oxygen consumption in mammalian kidneys hints at a potential interaction between transport activity and mitochondrial respiration in renal tubules.Renal tubules are heterogeneous in transport activity and mitochondrial metabolism, and traditional assays using bulk kidney tissues cannot provide segment-specific information.Here, we applied an extracellular flux analysis to investigate mitochondrial respiration and energy metabolism in isolated renal tubules. This assay is sensitive in detecting oxygen consumption and acid production in centimeter-length renal tubules and reliably recapitulates segment-specific metabolic features.Acute inhibition of transport activity reduces basal and ATP-linked mitochondrial respirations without changing maximal mitochondrial respiratory capacity. Chronic alterations of transport activity further adjust maximal mitochondrial respiratory capacity via regulating mitochondrial biogenesis or non-transcriptional mechanisms.Our findings support the concept that renal tubular cells finely adjust mitochondrial bioenergetics and biogenesis to match the new steady state of transport activity.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献