Interpretable deep learning reveals the sequence rules of Hippo signaling

Author:

Dalal KhyatiORCID,McAnany CharlesORCID,Weilert MelanieORCID,McKinney Mary CathleenORCID,Krueger SabrinaORCID,Zeitlinger JuliaORCID

Abstract

SummaryThe response to signaling pathways is highly context-specific, and identifying the transcription factors and mechanisms that are responsible is very challenging. Using the Hippo pathway in mouse trophoblast stem cells as a model, we show here that this information is encoded incis-regulatory sequences and can be learned from high-resolution binding data of signaling transcription factors. Using interpretable deep learning, we show that the binding levels of TEAD4 and YAP1 are enhanced in a distance-dependent manner by cell type-specific transcription factors, including TFAP2C. We also discovered that strictly spacedTead doublemotifs are widespread highly active canonical response elements that mediate cooperativity by promoting labile TEAD4 protein-protein interactions on DNA. These syntax rules and mechanisms apply genome-wide and allow us to predict how small sequence changes alter the activity of enhancersin vivo. This illustrates the power of interpretable deep learning to decode canonical and cell type-specific sequence rules of signaling pathways.Graphical abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3