RevealingIn SituMolecular Profiles of Glomerular Cell Types and Substructures with Integrated Imaging Mass Spectrometry and Multiplexed Immunofluorescence Microscopy

Author:

Esselman Allison B.ORCID,Moser Felipe A.ORCID,Tideman LéonoreORCID,Migas Lukasz G.ORCID,Djambazova Katerina V.ORCID,Colley Madeline E.ORCID,Pingry Ellie L.ORCID,Patterson Nathan HeathORCID,Farrow Melissa A.ORCID,Yang HaichunORCID,Fogo Agnes B.ORCID,de Caestecker MarkORCID,Van de Plas RafORCID,Spraggins Jeffrey M.ORCID

Abstract

AbstractGlomeruli filter blood through the coordination of podocytes, mesangial cells, fenestrated endothelial cells, and the glomerular basement membrane. Cellular changes, such as podocyte loss, are associated with pathologies like diabetic kidney disease (DKD). However, little is known regarding thein situmolecular profiles of specific cell types and how these profiles change with disease. Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is well-suited for untargeted tissue mapping of a wide range of molecular classes. Additional imaging modalities can be integrated with MALDI IMS to associate these biomolecular distributions to specific cell types. Herein, we demonstrate an integrated workflow combining MALDI IMS and multiplexed immunofluorescence (MxIF) microscopy. High spatial resolution MALDI IMS (5 µm pixel size) was used to determine lipid distributions within human glomeruli, revealing intra-glomerular lipid heterogeneity. Mass spectrometric data were linked to specific glomerular cell types through new methods that enable MxIF microscopy to be performed on the same tissue section following MALDI IMS without sacrificing signal quality from either modality. A combination of machine-learning approaches was assembled, enabling cell-type segmentation and identification based on MxIF data followed by the mining of cell type or cluster-associated MALDI IMS signatures using classification models and interpretable machine learning. This allowed the automated discovery of spatially specific biomarker candidates for glomerular substructures and cell types. Overall, the work presented here establishes a toolbox for probing molecular signatures of glomerular cell types and substructures within tissue microenvironments and provides a framework that applies to other kidney tissue features and organ systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3