Cross-species alignment along the chronological axis reveals evolutionary effect on structural development of human brain

Author:

Li Yue,Sun Qinyao,Zhu Shunli,Chu Congying,Wang JiaojianORCID

Abstract

AbstractDisentangling evolution mysteries of human brain has always been an imperative endeavor in neuroscience. On the one hand, by spatially aligning the brains between human and nonhuman primates (NHPs), previous efforts in comparative studies revealed both correspondence and difference in brain anatomy, e.g., the morphological and the connectomic patterns. On the other hand, brain anatomical development along the temporal axis is evident for both human and NHPs in early life. However, it remains largely unknown whether we can conjugate the brain development phases between human and NHPs, and, especially, what the role played by the brain anatomy in the conjugation will be. Here, we proposed to embed the brain anatomy of human and macaque in the chronological axis for enabling the cross-species comparison on brain development. Specifically, we separately established the prediction models by using the brain anatomical features in gray matter and white matter tracts to predict the chronological age in the human and macaque samples with brain development. We observed that applying the trained models within-species could well predict the chronological age. Interestingly, by conducting the cross-species application of the trained models, e.g., applying the model trained in humans to the data of macaques, we found a significant cross-species imbalance regarding to the model performance, in which the model trained in macaque showed a higher accuracy in predicting the chronological age of human than the model trained in human in predicting the chronological age of macaque. The cross application of the trained model introduced the brain cross-species age gap (BCAP) as an individual index to quantify the cross-species discrepancy along the temporal axis of brain development for each participant. We further showed that BCAP was associated with the behavioral performance in both visual sensitivity test and picture vocabulary test in the human samples. Taken together, our study situated the cross-species brain development along the chronological axis, which highlighted the disproportionately anatomical development in the human brain to extend our understanding of the potential evolutionary effects.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3