Inferring fungal growth rates from optical density data

Author:

Hameed TaraORCID,Motsi Natasha,Bignell ElaineORCID,Tanaka Reiko J.ORCID

Abstract

AbstractQuantifying fungal growth underpins our ability to effectively treat severe fungal infections. Current methods quantify fungal growth rates from time-course morphology-specific data, such as hyphal length data. However, automated large-scale collection of such data lies beyond the scope of most clinical microbiology laboratories. In this paper, we propose a mathematical model of fungal growth to estimate morphology-specific growth rates from easy-to-collect, but indirect, optical density (OD600) data ofAspergillus fumigatusgrowth (filamentous fungus). Our method accounts for OD600being an indirect measure by explicitly including the relationship between the indirect OD600measurements and the calibrating true fungal growth in the model. Therefore, the method does not requirede novogeneration of calibration data. Our model outperformed reference models at fitting to and predicting OD600growth curves and overcame observed discrepancies between morphology-specific rates inferred from OD600versus directly measured data in reference models that did not include calibration.Author summaryQuantifying fungal growth is essential for antifungal drug discovery and monitoring antifungal resistance. As fungal growth is complex, with fungal morphology (shape) dynamically changing over time, previous studies have quantified fungal growth by estimating growth rates during specific fungal morphologies (morphology-specific growth rates) or by mathematically modelling fungal growth. However, collecting time-series data that captures the morphological information required for mathematical model fitting or estimating morphology-specific growth rates is prohibitively time consuming for large-scale drug testing in most microbiology laboratories. Alternatively, fungal growth can be quickly, although indirectly, quantified by measuring the optical density (OD) of a broth culture. However, changes in OD are not always reflective of true changes in fungal growth because OD is an indirect measure. This paper proposes a method to model fungal growth and estimate a morphology-specific growth rate from indirect OD600measurements of the major mould pathogen,Aspergillus fumigatus. We explicitly model the relationship between measured indirect OD600data and true fungal growth (calibration). The presented work serves as the much-needed foundation for estimating and comparing morphology-specific fungal growth rates in varying antifungal drug concentrations using only OD600data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3