Abstract
ABSTRACTResearchers choose different methods of making giant unilamellar vesicles in order to satisfy different constraints of their experimental designs. A challenge of using a variety of methods is that each may produce vesicles of different lipid compositions, even if all vesicles are made from a common stock mixture. Here, we use mass spectrometry to investigate ratios of lipids in vesicles made by five common methods: electroformation on indium tin oxide slides, electroformation on platinum wires, gentle hydration, emulsion transfer, and extrusion. We made vesicles from either 5-component or binary mixtures of lipids chosen to span a wide range of physical properties: di(18:1)PC, di(16:0)PC, di(18:1)PG, di(12:0)PE, and cholesterol. For a mixture of all five of these lipids, ITO electroformation, Pt electroformation, gentle hydration, and extrusion methods result in only minor shifts (≤ 5 mol%) in lipid ratios of vesicles relative to a common stock solution. In contrast, emulsion transfer results in ∼80% less cholesterol than expected from the stock solution, which is counterbalanced by a surprising overabundance of saturated PC-lipid relative to all other phospholipids. Experiments using binary mixtures of some of the lipids largely support results from the 5-component mixture. Exact values of lipid ratios variations likely depend on the details of each method, so a broader conclusion is that experiments that increment lipid ratios in small steps will be highly sensitive to the method of lipid formation and to sample-to-sample variations, which are low (roughly ±2 mol% in the 5-component mixture and either scale proportionally with increasing mole fraction or remain low). Experiments that increment lipid ratios in larger steps or that seek to explain general trends or new phenomena will be less sensitive to the method used.SIGNIFICANCE STATEMENTSmall changes to the amounts and types of lipids in membranes can drastically affect the membrane’s behavior. Unfortunately, it is unknown whether (or to what extent) different methods of making vesicles alter the ratios of lipids in membranes, even when identical stock solutions are used. This presents challenges for researchers when comparing data with colleagues who use different methods. Here, we measure ratios of lipid types in vesicle membranes produced by five methods. We assess each method’s reproducibility and compare resulting vesicle compositions across methods. In doing so, we provide a quantitative basis that the scientific community can use to estimate whether differences between their results can be simply attributed to differences between methods or to sample-to-sample variations.
Publisher
Cold Spring Harbor Laboratory