Fitness adaptations of Japanese encephalitis virus in pigs following vector-free serial passaging

Author:

Marti AndreaORCID,Nater Alexander,Magalhaes Jenny Pego,Almeida Lea,Lewandowska Marta,Liniger Matthias,Ruggli Nicolas,Grau-Roma Llorenç,Alnaji Fadi,Vignuzzi Marco,García-Nicolás Obdulio,Summerfield ArturORCID

Abstract

AbstractJapanese encephalitis virus (JEV) is a zoonotic mosquito-transmitted Flavivirus circulating in birds and pigs. In humans, JEV can cause severe viral encephalitis with high mortality. Considering that vector-free direct virus transmission was observed in pigs, JEV introduction into an immunologically naïve pig population could result in a series of direct transmissions disrupting the alternating host cycling between vertebrates and mosquitoes. To assess the potential consequences of such a realistic scenario, we passaged JEV ten times in pigs. This resulted in higherin vivoviral replication, increased shedding, and stronger innate immune responses in pigs. Nevertheless, the viral tissue tropism remained similar and frequency of direct transmission was not enhanced. Next generation sequencing showed single nucleotide deviations in 10% of the genome during passaging. In total, 25 point mutations were selected to reach a frequency of at least 35% in one of the passages. From these, six mutations resulted in amino acid changes located in the precursor of membrane, the envelope, the non-structural 3 and the non-structural 5 proteins. In a competition experiment with two lines of passaging, the mutation M374L in the envelope protein and N275D in the non-structural protein 5 showed a fitness advantage in pigs. Altogether, the interruption of the alternating host cycle of JEV caused a prominent selection of viral quasispecies as well as selection of de novo mutations associated with fitness gains in pigs, albeit without enhancing direct transmission frequency.Author summaryJapanese encephalitis virus (JEV) represents a major health threat in parts of Asia and Oceania. Primary vertebrate hosts are birds and pigs, but human infection also occurs and can cause severe encephalitis with high mortality. Like other Flaviviruses transmitted by insect bites, JEV requires replication in alternating cycles between mosquitoes on one side and birds or pigs on the other side. However, we previously reported that direct transmissions between pigs in absence of mosquitos can occur. Considering the increased risks for such events after the spread of JEV to a new region with immunologically naïve pigs, the present study was performed to understand if and how a series of direct transmissions would promote JEV adaptations to pigs and change virus-host interactions. Pigs infected with JEV passaged ten times showed enhanced clinical symptoms and stronger antiviral immune response, but luckily no increase in direct transmission was observed. Nevertheless, genomic analysis demonstrated a complete change in dominant virus variants, as well as selection of six viral amino acid changes. This indicates that interruptions of the alternating lifestyle of JEV causes a strong evolutionary pressure, which through fitness adaptations can change the viral characteristics.

Publisher

Cold Spring Harbor Laboratory

Reference98 articles.

1. Japanese encephalitis — the prospects for new treatments

2. Transmission cycles, host range, evolution and emergence of arboviral disease

3. Estimated global incidence of Japanese encephalitis:

4. World Health Organization. Japanese encephalitis. In: WHO.int [Internet]. 9 May 2019 [cited 27 Jul 2023]. Available: https://www.who.int/news-room/fact-sheets/detail/japanese-encephalitis

5. Ecology and Geographical Expansion of Japanese Encephalitis Virus

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3