Systematic mapping of MCU-mediated mitochondrial calcium signaling networks

Author:

Herran Hilda Delgado de la,Reane Denis Vecellio,Cheng Yiming,Katona Máté,Hosp Fabian,Greotti Elisa,Wettmarshausen Jennifer,Patron Maria,Mohr Hermine,Mello Natalia Prudente de,Chudenkova Margarita,Gorza Matteo,Walia Safal,Feng Michael Sheng-Fu,Leimpek Anja,Mielenz Dirk,Pellegata Natalia S.,Langer ThomasORCID,Hajnóczky György,Mann Matthias,Murgia Marta,Perocchi Fabiana

Abstract

ABSTRACTThe Mitochondrial Ca2+Uniporter Channel (MCUC) allows calcium entry into the mitochondrial matrix to regulate energy metabolism but also cell death. Although, several MCUC components have been identified, the molecular basis of mitochondrial Ca2+signaling networks and their remodeling upon changes in uniporter activity have not been systematically assessed. Using an unbiased and quantitative proteomic approach, we map the MCUC interactome in HEK293 cells under physiological conditions and upon chronic loss or gain of mitochondrial Ca2+uptake. Besides all previously known subunits of the uniporter, we identify 89 high-confidence interactors linking MCUC to several mitochondrial complexes and pathways, half of which are currently linked to metabolic, neurological, and immunological diseases. As a proof-of-concept, we validate EFHD1 as a binding partner of MCU, EMRE and MCUB with a MICU1-dependent inhibitory effect on Ca2+uptake. To investigate compensatory mechanisms and functional consequences of mitochondrial Ca2+dyshomeostasis, we systematically survey the MCU interactome upon silencing of EMRE, MCUB, MICU1 or MICU2. We observe profound changes in the MCU interconnectivity, whereby downregulation of EMRE reduces the number of MCU interactors of over 10-fold, while silencing of MCUB leads to a wider functional network linking MCU to mitochondrial stress response pathways and cell death. Altogether our study provides a comprehensive map of MCUC protein-protein interactions and a rich, high-confidence resource that can be explored to gain insights into the players and mechanisms involved in calcium signal transduction cascades and their relevance in human diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3