Abstract
AbstractThe intestinal microbiome (IM) is decisive for the human host’s health. Numerous microbiota drive the progression of colorectal cancer (CRC), the third-most common cancer worldwide. The Gram-negativeFusobacterium nucleatum(Fn) is overrepresented in the IM of CRC patients and has been correlated with the emergence, progression, and metastasis of tumors. A key pathogenic factor of Fn is the adhesin Fap2, an autotransporter protein that facilitates association to cancer and immune cells via two receptors, the glycan Gal-GalNAc and the T-cell protein TIGIT, respectively. The latter interaction leads to deactivation of immune cells. Mechanistic details of the Fap2/TIGIT interaction remain elusive due to the lack of high-resolution structural data. Here, we report a system to recombinantly express functional Fap2 on theEscherichia colisurface, which interacts with Gal-GalNAc on cancer cells and with purified TIGIT with submicromolar affinity. Cryo-EM structures of Fap2, alone and in complex with TIGIT, show that the ∼50 nm long rod-shaped Fap2 extracellular region binds to TIGIT on its membrane-distal tip via an extension of a β-helix domain. Moreover, by combining structure predictions, cryo-EM, docking and MD simulations, we identified a binding pit for Gal-GalNAc on the tip of Fap2. Our data represent the first purification and high-resolution structural analysis of a Fn autotransporter adhesin and its receptor association.
Publisher
Cold Spring Harbor Laboratory