Pre-bound State Discovered in the Unbinding Pathway of Fluorinated Variants of the Trypsin-BPTI Complex Using Random Acceleration Molecular Dynamics Simulations

Author:

Wehrhan LeonORCID,Keller Bettina G.ORCID

Abstract

The serine protease trypsin forms a tightly bound inhibitor complex with Bovine Pancreatic Trypsin Inhibitor (BPTI). The complex is stabilized by the P1 residue Lys15, which interacts with the negatively charged amino acids at the bottom of the S1 pocket. Truncating the P1 residue of wildtype BPTI to alpha-aminobutyric acid (Abu) leaves a complex with moderate inhibitor strength, which is held in place by additional hydrogen bonds at the protein-protein interface. Fluorination of the Abu residue partially restores inhibitor strength. The mechanism with which fluorination can restore the inhibitor strength is unknown and accurate computational investigation requires knowledge of the binding and unbinding pathways. The preferred unbinding pathway is likely to be complex, as encounter states have been described before and unrestrained Umbrella Sampling simulations of these complexes suggest additional energetic minima. Here, we use Random Acceleration Molecular Dynamics to find a new metastable state in the unbinding pathway of Abu-BPTI variants and wildtype BPTI from trypsin, which we call the pre-bound state. The pre-bound state and the fully bound state differ by a substantial shift in the position, a slight shift in the orientation of the the BPTI variants and change in the interaction pattern. Particularly important is the breaking of three hydrogen bonds around Arg17. Fluorination of the P1 residue lowers the energy barrier of the transition between fully bound state and pre-bound state and also lowers the energy minimum of the pre-bound state. While the effect of fluorination is in general difficult to quantify, here it is in part caused by a favorable stabilization of a hydrogen bond between Gln194 and Cys14. The interaction pattern of the pre-bound state offers insight into the inhibitory mechanism of BPTI and might add valuable information for the design serine protease inhibitors.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fluorinated Protein–Ligand Complexes: A Computational Perspective;The Journal of Physical Chemistry B;2024-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3