A deterministic, c-di-GMP-dependent genetic program ensures the generation of phenotypically similar, symmetric daughter cells during cytokinesis

Author:

Pérez-Burgos María,Herfurth Marco,Kaczmarczyk Andreas,Harms Andrea,Huber Katrin,Jenal Urs,Glatter Timo,Søgaard-Andersen LotteORCID

Abstract

AbstractPhenotypic heterogeneity in bacteria results from stochastic processes or deterministic genetic programs. These deterministic programs often incorporate the versatile second messenger c-di-GMP, and by deploying c-di-GMP metabolizing enzyme(s) asymmetrically during cell division give rise to daughter cells with different c-di-GMP levels. By contrast, less is known about how phenotypic heterogeneity is kept to a minimum. Here, we identify a deterministic c-di-GMP-dependent genetic program that is hardwired into the cell cycle ofMyxococcus xanthusto minimize phenotypic heterogeneity and guarantee the formation of phenotypically similar daughter cells during division. Cells lacking the diguanylate cyclase DmxA have an aberrant motility behaviour. DmxA is recruited to the cell division site and its activity switched on during cytokinesis, resulting in a dramatic but transient increase in the c-di-GMP concentration. During cytokinesis, this c-di-GMP burst ensures the symmetric incorporation and allocation of structural motility proteins and motility regulators at the new cell poles of the two daughters, thereby generating mirror-symmetric, phenotypically similar daughters with correct motility behaviours. These findings suggest a general c-di-GMP-dependent mechanism for minimizing phenotypic heterogeneity, and demonstrate that bacteria by deploying c-di-GMP metabolizing enzymes to distinct subcellular locations ensure the formation of dissimilar or similar daughter cells.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3