Grapevine Rootstock and Scion Genotypes’ Symbiosis with Soil Microbiome: A Machine Learning Revelation for Climate-Resilient Viticulture

Author:

Anand Lakshay,Gentimis Thanos,Downie Allan Bruce,Lopez Carlos M. RodriguezORCID

Abstract

AbstractGiven the impact of climate change on agriculture, the development of resilient crop cultivars is imperative. A healthy plant microbiota is key to plant productivity, influencing nutrient absorption, disease resistance, and overall vigor. The plant genetic factors controlling the assembly of microbial communities are still unknown. Here we examine if Machine Learning can predict grapevine rootstock and scion genotypes based on soil microbiota, despite environmental variability. The study utilized soil microbial bacteriome datasets from 281 vineyards across 13 countries and five continents, featuring 34 differentVitis viniferacultivars grafted onto, often ambiguous, rootstocks. Random Forests, Adaptive Boost, Gradient Boost, Support Vector Machines, Gaussian and Bernoulli Naïve Bayes, k-Nearest Neighbor, and Neural Networks algorithms were employed to predict continent, country, scion, and rootstock cultivar, under two filtering criteria: retaining sparse classes, ensuring class diversity, and excluding sparse classes assessing model robustness against overfitting. Both criteria showed remarkable F1-weighted scores (>0.8) for all classes, for most algorithms. Moreover, successful rootstock and scion genotype prediction from soil microbiomes confirms that genotypes of both plant parts shape the microbiome. These insights pave the way for identifying plant genes for use with breeding programs that enhance plant productivity and sustainability by improving the plant-microbiota relationship.

Publisher

Cold Spring Harbor Laboratory

Reference76 articles.

1. Abadi, M. , Barham, P. , Chen, J. M. , Chen, Z. F. , Davis, A. , Dean, J. , Devin, M. , Ghemawat, S. , Irving, G. , Isard, M. , Kudlur, M. , Levenberg, J. , Monga, R. , Moore, S. , Murray, D. G. , Steiner, B. , Tucker, P. , Vasudevan, V. , Warden, P. , … Assoc, U. (2016, Nov 02-04). TensorFlow: A system for large-scale machine learning. [Proceedings of osdi’16: 12th usenix symposium on operating systems design and implementation]. 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI), Savannah, GA.

2. Acumen Research and Consulting. (2022). Wine Market Size - Global Industry, Share, Analysis, Trends and Forecast 2022 - 2030. Accessed February 22th, 2024. https://www.acumenresearchandconsulting.com/wine-market

3. An approach for classification of highly imbalanced data using weighting and undersampling;Amino acids,2010

4. A new method for non-parametric multivariate analysis of variance

5. The microbiota of the grapevine holobiont: A key component of plant health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3