A Lung Cancer Mouse Model Database

Author:

Cai Ling,Gao Ying,DeBerardinis Ralph J.,Acquaah-Mensah George,Aidinis Vassilis,Beane Jennifer E.,Biswal Shyam,Chen Ting,Concepcion-Crisol Carla P.,Grüner Barbara M.,Jia Deshui,Jones Robert,Kurie Jonathan M.,Lee Min Gyu,Lindahl Per,Lissanu Yonathan,Lorz Lopez Maria Corina,Martinelli Rosanna,Mazur Pawel K.,Mazzilli Sarah A.,Mii Shinji,Moll Herwig,Moorehead Roger,Morrisey Edward E.,Ng Sheng Rong,Oser Matthew G.,Pandiri Arun R.,Powell Charles A.,Ramadori Giorgio,Santos Lafuente Mirentxu,Snyder Eric,Sotillo Rocio,Su Kang-Yi,Taki Tetsuro,Taparra Kekoa,Xia Yifeng,van Veen Ed,Winslow Monte M.,Xiao Guanghua,Rudin Charles M.,Oliver Trudy G.,Xie Yang,Minna John D.

Abstract

AbstractLung cancer, the leading cause of cancer mortality, exhibits diverse histological subtypes and genetic complexities. Numerous preclinical mouse models have been developed to study lung cancer, but data from these models are disparate, siloed, and difficult to compare in a centralized fashion. Here we established the Lung Cancer Mouse Model Database (LCMMDB), an extensive repository of 1,354 samples from 77 transcriptomic datasets covering 974 samples from genetically engineered mouse models (GEMMs), 368 samples from carcinogen-induced models, and 12 samples from a spontaneous model. Meticulous curation and collaboration with data depositors have produced a robust and comprehensive database, enhancing the fidelity of the genetic landscape it depicts. The LCMMDB aligns 859 tumors from GEMMs with human lung cancer mutations, enabling comparative analysis and revealing a pressing need to broaden the diversity of genetic aberrations modeled in GEMMs. Accompanying this resource, we developed a web application that offers researchers intuitive tools for in-depth gene expression analysis. With standardized reprocessing of gene expression data, the LCMMDB serves as a powerful platform for cross-study comparison and lays the groundwork for future research, aiming to bridge the gap between mouse models and human lung cancer for improved translational relevance.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3