On-chip non-contact mechanical cell stimulation - quantification of SKOV-3 alignment to suspended microstructures

Author:

Onal SevgiORCID,Alkaisi Maan M.ORCID,Nock VolkerORCID

Abstract

ABSTRACTAlthough the accumulation of random genetic mutations have been traditionally viewed as the main cause of cancer progression, altered mechanobiological profiles of the cells and microenvironment also play a major role as a mutation-independent element. To probe the latter, we have previously reported a microfluidic cell-culture platform with an integrated flexible actuator and its application for sequential cyclic compression of cancer cells. The platform is composed of a control microchannel in a top layer for introducing external pressure, and a polydimethylsiloxane (PDMS) membrane from which a monolithically-integrated actuator protrudes downwards into a cell-culture microchannel. When actively actuated, the integrated actuator, referred to as micro-piston, transfers the pressure from the control channel as a mechanical force to the cells underneath. When not actuated, the micro-piston remains suspended above cells, separated from the latter via a liquid-filled gap of ∼108 µm. Despite the lack of direct physical contact between the micro-piston and cells in the latter arrangement, we observed distinct alignment of SKOV-3 ovarian cancer cells to the piston shape. To characterize this observation, micro-piston localization, shape, and size were adjusted and the directionality of a mono-layer of SKOV-3 cells relative to the suspended structure was probed. Cell alignment analysis was performed in a novel, label-free approach by measuring elongation angles of whole cell bodies with respect to micro-piston peripheries. Alignment of SKOV-3 cells to the structure outline was significant for circular, triangular and square micro-piston when compared to control areas without micro-piston on the same chip. The effect was present irrespective of whether cells were loaded with micro-pistons in static position (∼108 µm gap) or actively retracted using vacuum (>108 µm gap). Similar alignment was not observed for MCF7 cancer cells and MCF10A non-cancerous epithelial cells. The reported observation of directional movement and growth of SKOV-3 cells towards the region under micro-pistons point towards a to-date unexplored mechanotactic behaviour of these cells, warranting future investigations regarding the mechanisms involved and the role these may play in cancer.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3