Monosynaptically-interconnected Network Module (MNM) Approach for High-Resolution Brain Sub-Network Analysis

Author:

Kim Sunwhi,Kim Yong-Eun,Ujihara Yusuke,Kim Il HwanORCID

Abstract

AbstractWe introduce the Monosynaptically-interconnected Network Module (MNM) approach, an innovative method designed for efficiently analyzing the anatomical structure and functional dynamics of specific brain network modulesin vivo. Utilizing an Intein-mediated split-Cre system combined with bidirectional adeno-associated viruses, this technique precisely targets and manipulates monosynaptically interconnected modular subnetworks in freely moving animals. We demonstrate its utility through anatomical and functional mapping of a specific MNM encompassing the prefrontal cortex (PFC), basolateral amygdala (BLA), and intermediary hub regions. Specifically, the MNM approach with Cre-reporter mice visualizes detailed network architecture and enables the tracing of axonal connections among the nodes in the network. Furthermore, integration of the MNM approach with Cre-dependent Ca2+indicator and multi-fiber photometry in freely moving mice reveals enhanced correlative network activities in social contexts. This versatile technique offers significant potential for advancing our understanding of network functions that underlie complex behaviors, providing a modular network perspective.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3