Multivariate genome-wide association analysis of quantitative reading skill and dyslexia improves gene discovery

Author:

Mountford Hayley S.ORCID,Eising ElseORCID,Fontanillas PierreORCID,Auton AdamORCID, ,Irving-Pease Evan K.ORCID,Doust Catherine,Bates Timothy C.ORCID,Martin Nicholas G.ORCID,Fisher Simon E.ORCID,Luciano MichelleORCID

Abstract

AbstractThe ability to read is an important life skill and a major route to education. Individual differences in reading ability are influenced by genetic variation, with a heritability of 0.66 for word reading, estimated by twin studies. Until recently, genomic investigations were limited by modest sample size. Here we use a multivariate genome-wide association study (GWAS) method, MTAG, to leverage summary statistics from two independent GWAS efforts, boosting power for analyses of reading ability; GenLang meta-analysis of word reading (N = 27 180) and the 23andMe, Inc., study of dyslexia (Ncases= 51 800, Ncontrols= 1 087 070). We increase effective sample size to N = 102 082, representing the largest genetic study of reading ability, to date. We identified 35 independent genome-wide significant loci, including 7 regions not previously reported. Single-nucleotide polymorphism (SNP) based heritability was estimated at 24%. We observed clear positive genetic correlations with cognitive and educational measures. Gene-set analyses implicated neuronal synapses and proneural glioblastoma pathways, further supported by enrichment of neuronally expressed genes in the developing embryonic brain. Polygenic scores of our multivariate results predicted between 2.29-3.50% of variance in reading ability in an independent sample, the National Child Development Study cohort (N = 6 410). Polygenic adaptation was examined using a large panel of ancient genomes spanning the last ∼15k years. We did not find evidence of selection, suggesting that reading ability may not have been subject to recent selection pressure in Europeans. By combining existing datasets to improve statistical power, these results provide novel insights into the biology of reading.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3