Proteomics analysis reveals novel phosphorylated residues and associated proteins of the polyomavirus DNA replication initiation complex

Author:

Dey-Rao RamaORCID,Shen Shichen,Qu Jun,Melendy ThomasORCID

Abstract

AbstractPolyomavirus (PyV) Large T-antigen (LT) is the major viral regulatory protein that targets numerous cellular factors/pathways: tumor suppressors, cell cycle regulators, transcription and chromatin regulators, as well as other factors for viral replication. LT directly recruits the cellular replication factors involved in LT’s recognition of the viral origin, origin unwinding, and primer synthesis which is carried out by mutual interactions between LT, DNA polymerase alpha-primase (Polprim), and single strand (ss) DNA binding replication protein A (RPA). The activities as well as interactions of these three with each other as well as other factors, are known to be modulated by post-translational modifications (PTMs); however, modern high-sensitivity proteomic analyses of the PTMs as well as proteins associated with the three have been lacking. Elution from immunoprecipitation (IP) of the three factors were subjected to high-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS). We identified 479 novel phosphorylated amino acid residues (PAARs) on the three factors: 82 PAARs on SV40 LT, 305 on the Polprim heterotetrametric complex and 92 on the RPA heterotrimeric complex. LC-MS/MS analysis also identified proteins that co-immunoprecipitated (coIP-ed) with the three factors that were not previously reported: 374 with LT, 453 with Polprim and 183 with RPA. We used a bioinformatic-based approach to analyze the proteomics data and demonstrate a highly significant “enrichment” of transcription-related process associated uniquely with LT, consistent with its role as a transcriptional regulator, as opposed to Polprim and RPA associated proteins which showed no such enrichment. The most significant cell cycle related network was regulated by ETS proto-oncogene 1 (ETS1), indicating its involvement in regulatory control of DNA replication, repair, and metabolism. The interaction between LT and ETS1 is validated and shown to be independent of nucleic acids. One of the novel phosphorylated aa residues detected on LT from this study, has been demonstrated by us to affect DNA replication activities of SV40 Large T-antigen. Our data provide substantial additional novel information on PAARs, and proteins associated with PyV LT, and the cellular Polprim-, RPA- complexes which will benefit research in DNA replication, transformation, transcription, and other viral and host cellular processes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3