Deep plasma proteomics with data-independent acquisition: A fastlane towards biomarkers identification

Author:

Ward BradleyORCID,Pyr dit Ruys SébastienORCID,Balligand Jean-LucORCID,Belkhir LeïlaORCID,Cani Patrice D.ORCID,Collet Jean-François,De Greef JulienORCID,Dewulf Joseph P.,Gatto LaurentORCID,Haufroid VincentORCID,Jodogne SébastienORCID,Kabamba BenoîtORCID,Lingurski Maxime,Yombi Jean Cyr,Vertommen DidierORCID,Elens LaureORCID

Abstract

AbstractPlasma proteomic is a precious tool in human disease research, but requires extensive sample preparation in order to perform in-depth analysis and biomarker discovery using traditional Data-Dependent Acquisition (DDA). Here, we highlight the efficacy of combining moderate plasma prefractionation and Data-Independent Acquisition (DIA) to significantly improve proteome coverage and depth, while remaining cost- and time-efficient.Using human plasma collected from a 20-patient COVID-19 cohort, our method utilises commonly available solutions for depletion, sample preparation, and fractionation, followed by 3 LC-MS/MS injections for a 360-minutes DIA run time. DIA-NN software was then used for precursor identification, and the QFeatures R package was used for protein aggregation.We detect 1,321 proteins on average per patient, and 2,031 unique proteins across the cohort. Filtering precursors present in under 25% of patients, we still detect 1,230 average proteins and 1,590 unique proteins, indicating robust protein identification. Differential analysis further demonstrates the applicability of this method for plasma proteomic research and clinical biomarker identification.In summary, this study introduces a streamlined, cost- and time-effective approach to deep plasma proteome analysis, expanding its utility beyond classical research environments and enabling larger-scale multi-omics investigations in clinical settings.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3