Unbiased characterization of atrial fibrillation phenotypic architecture provides insight to genetic liability and clinically relevant outcomes

Author:

Davogustto Giovanni,Zhao Shilin,Li Yajing,Farber-Eger Eric,Lowery Brandon D.,Shaffer Lauren Lee,Mosley Jonathan D.ORCID,Shoemaker M. Benjamin,Xu YaominORCID,Roden Dan M.ORCID,Wells Quinn S.

Abstract

ABSTRACTBackgroundAtrial Fibrillation (AF) is a common and clinically heterogeneous arrythmia. Machine learning (ML) algorithms can define data-driven disease subtypes in an unbiased fashion, but whether the AF subgroups defined in this way align with underlying mechanisms, such as high polygenic liability to AF or inflammation, and associate with clinical outcomes is unclear.MethodsWe identified individuals with AF in a large biobank linked to electronic health records (EHR) and genome-wide genotyping. The phenotypic architecture in the AF cohort was defined using principal component analysis of 35 expertly curated and uncorrelated clinical features. We applied an unsupervised co-clustering machine learning algorithm to the 35 features to identify distinct phenotypic AF clusters. The clinical inflammatory status of the clusters was defined using measured biomarkers (CRP, ESR, WBC, Neutrophil %, Platelet count, RDW) within 6 months of first AF mention in the EHR. Polygenic risk scores (PRS) for AF and cytokine levels were used to assess genetic liability of clusters to AF and inflammation, respectively. Clinical outcomes were collected from EHR up to the last medical contact.ResultsThe analysis included 23,271 subjects with AF, of which 6,023 had available genome-wide genotyping. The machine learning algorithm identified 3 phenotypic clusters that were distinguished by increasing prevalence of comorbidities, particularly renal dysfunction, and coronary artery disease. Polygenic liability to AF across clusters was highest in the low comorbidity cluster. Clinically measured inflammatory biomarkers were highest in the high comorbid cluster, while there was no difference between groups in genetically predicted levels of inflammatory biomarkers. Subgroup assignment was associated with multiple clinical outcomes including mortality, stroke, bleeding, and use of cardiac implantable electronic devices after AF diagnosis.ConclusionPatient subgroups identified by unsupervised clustering were distinguished by comorbidity burden and associated with risk of clinically important outcomes. Polygenic liability to AF across clusters was greatest in the low comorbidity subgroup. Clinical inflammation, as reflected by measured biomarkers, was lowest in the subgroup with lowest comorbidities. However, there were no differences in genetically predicted levels of inflammatory biomarkers, suggesting associations between AF and inflammation is driven by acquired comorbidities rather than genetic predisposition.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3