Enhancing Plant Photosynthesis using Carbon Dots as Light Converter and Photosensitizer

Author:

Hu Haitao,Cheng Wenbo,Wang Xueyun,Yang Yu,Yu Xuemeng,Ding Jianwei,Lin Yiliang,Zhao Wei,Zhao Qiao,Ledesma-Amaro Rodrigo,Chen Xihan,Liu Junzhong,Yang Chen,Gao XiangORCID

Abstract

AbstractImproving photosynthetic efficiency is pivotal for CO2-based biomanufacturing and agriculture purposes. Despite the progress on photosynthetic biohybrids integrating biocatalysts with synthetic materials, nanomaterials with improved optical and photoelectrochemical properties are still needed to increase the energy-conversion efficiency. Here, we present a novel approach using carbon dots (CDs) as both intracellular photosensitizers and light converters for enhancing solar energy utilization in photosynthetic organisms. The CDs were produced from cyanobacterial biomass and used to convert a broad spectrum of solar irradiation to red light. We demonstrated that the nanosized CDs were incorporated into cyanobacterial cells and transferred light-excited electrons into the photosynthetic electron transfer chain. The biohybrids consisting of the CDs andSynechococcus elongatusexhibited increased growth rates, enhanced activities of both photosystems, and accelerated linear electron transport, compared with the cyanobacterial cells only. The supplementation of the CDs increased CO2-fixation rate and CO2-to-glycerol production by 2.4-fold and 2.2-fold, respectively. Furthermore, the CDs were shown to enhance photosynthesis and promote growth ofArabidopsis thaliana. The fresh weight of plant was increased 1.8-fold by CDs addition. These results reveal that simultaneous photosensitization and spectral modification could substantially improve the efficiency of natural photosynthesis. This study presents CDs as an attractive nanomaterial with great application potential in agriculture and solar-powered biomanufacturing.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3