To weight or not to weight? Studying the effect of selection bias in three large EHR-linked biobanks

Author:

Salvatore MaxwellORCID,Kundu RitobanORCID,Shi XuORCID,Friese Christopher RORCID,Lee SeunggeunORCID,Fritsche Lars GORCID,Mondul Alison MORCID,Hanauer David,Pearce Celeste LeighORCID,Mukherjee BhramarORCID

Abstract

AbstractObjectiveTo explore the role of selection bias adjustment by weighting electronic health record (EHR)-linked biobank data for commonly performed analyses.Materials and methodsWe mapped diagnosis (ICD code) data to standardized phecodes from three EHR-linked biobanks with varying recruitment strategies: All of Us (AOU; n=244,071), Michigan Genomics Initiative (MGI; n=81,243), and UK Biobank (UKB; n=401,167). Using 2019 National Health Interview Survey data, we constructed selection weights for AOU and MGI to be more representative of the US adult population. We used weights previously developed for UKB to represent the UKB-eligible population. We conducted four common descriptive and analytic tasks comparing unweighted and weighted results.ResultsFor AOU and MGI, estimated phecode prevalences decreased after weighting (weighted-unweighted median phecode prevalence ratio [MPR]: 0.82 and 0.61), while UKB’s estimates increased (MPR: 1.06). Weighting minimally impacted latent phenome dimensionality estimation. Comparing weighted versus unweighted PheWAS for colorectal cancer, the strongest associations remained unaltered and there was large overlap in significant hits. Weighting affected the estimated log-odds ratio for sex and colorectal cancer to align more closely with national registry-based estimates.DiscussionWeighting had limited impact on dimensionality estimation and large-scale hypothesis testing but impacted prevalence and association estimation more. Results from untargeted association analyses should be followed by weighted analysis when effect size estimation is of interest for specific signals.ConclusionEHR-linked biobanks should report recruitment and selection mechanisms and provide selection weights with defined target populations. Researchers should consider their intended estimands, specify source and target populations, and weight EHR-linked biobank analyses accordingly.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3