Abstract
AbstractEfflux is one of the mechanisms employed by Gram-negative bacteria to become resistant to routinely used antibiotics. The inhibition of efflux by targeting their regulators is a promising strategy to re-sensitise bacterial pathogens to antibiotics. AcrAB-TolC is the main Resistance-Nodulation-Division efflux pump in Enterobacteriaceae. MarA is an AraC/XylS family global regulator that regulates more than 40 genes related to the antimicrobial resistance phenotype, includingacrAB. The aim of this work was to understand the role of the N-terminal helix of MarA in the mechanism of DNA binding. An N-terminal deletion of MarA showed that the N-terminal helix has a role in the recognition of the functional marboxes. By engineering two double cysteine variants of MarA, and combiningin vitroelectrophoretic mobility assays andin vivomeasurements ofacrABtranscription with molecular dynamic simulations, it was shown that the immobilization of the N-terminal helix of MarA prevents binding to DNA. This new mechanism of inhibition seems to be universal for the monomeric members of the AraC/XylS family, as suggested by additional molecular dynamics simulations of the two-domain protein Rob. These results point to the N-terminal helix of the AraC/XylS family monomeric regulators as a promising target for the development of inhibitors.
Publisher
Cold Spring Harbor Laboratory