The N-terminal helix of MarA as a key element in the mechanism of DNA binding

Author:

Corbella MarinaORCID,Moreira CátiaORCID,Bello-Madruga RobertoORCID,Torrent MarcORCID,Kamerlin Shina C.L.ORCID,Blair Jessica M.A.ORCID,Sancho-Vaello EneaORCID

Abstract

AbstractEfflux is one of the mechanisms employed by Gram-negative bacteria to become resistant to routinely used antibiotics. The inhibition of efflux by targeting their regulators is a promising strategy to re-sensitise bacterial pathogens to antibiotics. AcrAB-TolC is the main Resistance-Nodulation-Division efflux pump in Enterobacteriaceae. MarA is an AraC/XylS family global regulator that regulates more than 40 genes related to the antimicrobial resistance phenotype, includingacrAB. The aim of this work was to understand the role of the N-terminal helix of MarA in the mechanism of DNA binding. An N-terminal deletion of MarA showed that the N-terminal helix has a role in the recognition of the functional marboxes. By engineering two double cysteine variants of MarA, and combiningin vitroelectrophoretic mobility assays andin vivomeasurements ofacrABtranscription with molecular dynamic simulations, it was shown that the immobilization of the N-terminal helix of MarA prevents binding to DNA. This new mechanism of inhibition seems to be universal for the monomeric members of the AraC/XylS family, as suggested by additional molecular dynamics simulations of the two-domain protein Rob. These results point to the N-terminal helix of the AraC/XylS family monomeric regulators as a promising target for the development of inhibitors.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3