Blockade of Interleukin-6 (IL-6) Signaling in Dedifferentiated Liposarcoma (DDLPS) Decreases Mouse Double Minute 2 (MDM2) Oncogenicity via Alternative Splicing

Author:

Zewdu AbebaORCID,Braggio Danielle,Lopez Gonzalo,Batte Kara,Khurshid Safiya,Costas de Faria Fernanda,Bid Hemant K.,Koller David,Casadei Lucia,Ladner Katherine J.,Wang David,Grignol ValerieORCID,Iwenofu O. Hans,Chandler Dawn,Guttridge Denis C.,Pollock Raphael E.ORCID

Abstract

AbstractEffective therapies for retroperitoneal (RP) dedifferentiated liposarcoma (DDLPS) remain unavailable. Loco-regional recurrence occurs in >80% of cases; 5-year disease-specific survival is only 20%. DDLPS is especially prevalent in the retroperitoneum and abdomen; evaluation of the DDLPS microenvironment in these high-fat compartments appears pertinent. Adipose is a main supplier of interleukin-6 (IL6); excessive activation of IL6 signal transducer glycoprotein 130 (GP130) underlies the development of some diseases. The role of GP130 pathway activation remains unstudied in DDLPS, so we examined the role of microenvironment fat cell activation of the IL6/GP130 signaling cascade in DDLPS. All DDLPS tumors and cell lines studied expressed elevated levels of the GP130-encoding geneIL6STand GP130 protein compared to normal tissue and cell line controls. IL6 increased DDLPS cell growth and migration, possibly through increased signal transducer and activator of transcription 1 (STAT1) and 3 (STAT3) activation, and upregulated mouse double minute 2 (MDM2). GP130 loss conveyed opposite effects; pharmacological blockade of GP130 by SC144 produced the MDM2 splice variant MDM2-ALT1, known to inhibit full length MDM2 (MDM2-FL). Although genomicMDM2amplification is pathognomonic for DDLPS, mechanisms driving MDM2 expression, regulation, and function beyond the MDM2:p53 negative feedback loop are poorly understood. Our findings suggest a novel preadipocyte DDLPS-promoting role due to IL6 release, via upregulation of DDLPS MDM2 expression. Pharmacological GP130 blockade reduced the IL6-induced increase in DDLPS MDM2 mRNA and protein levels, possibly through enhanced expression of MDM2-ALT1, a possibly targetable pathway with potential as future DDLPS patient therapy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3