Angiogenin regulates mitochondrial stress and function via tRNA-derived fragments generation and impacting tRNA modifications

Author:

Al-Mesitef Shadi,Tominaga Keita,Mousa Abdulrahman,Begley Thomas J,Dedon Peter CORCID,Rashad SherifORCID,Niizuma Kuniyasu

Abstract

AbstractMitochondrial stress and dysfunction play an important role in many diseases, such as cancer, diabetes, and neurodegenerative diseases. We previously observed that mitochondrial electron transport chain (ETC) inhibition can induce tRNA cleavage and tsRNAs (tRNA-derived small non-coding RNAs) generation. However, whether this process is mediated via Angiogenin (ANG), the canonical enzyme responsible for tRNA cleavage, and whether it has a role in regulating the mitochondrial stress response remains to be understood. ANG is linked to Amyotrophic Lateral Sclerosis (ALS) and other conditions where mitochondrial stress plays a role in pathophysiology. Here, we aimed to examine the role of ANG in regulating the translational response to mitochondrial stress. We observed that ANG protected the cells from respiratory complex III and V inhibition specifically. Furthermore, we validated that the tsRNAs generated during mitochondrial and oxidative stress are mediated by ANG, given that their production is abrogated after ANG knock-out (KO). In addition, we observed that ANG-KO altered the tRNA modification status. Namely, we observed that ANG-KO led to the downregulation of queuosine tRNA modifications (tRNA-Q). tRNA-Q itself is related to mitochondrial translation and function. Indeed, we observed that ANG-KO led to reduced mitochondrial respiration and function. ANG altered how the cells respond to mitochondrial stress by altering the dynamic tRNA modification changes occurring during the stress response. We further examined the impact of ANG-KO on stress granules (SG) assembly as well as the knockdown of G3BP1 (core protein of SGs) on tsRNAs generation. Our results indicate that ANG regulates mitochondrial function and stress via tsRNAs generation as well as altering tRNA modifications levels. Our data also indicate that there are no direct links between tRNA cleavage and SG assembly, and both could be parallel systems for translation repression during stress.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3