Large- and Small-Animal Studies of Safety, Pharmacokinetics (PK), and Biodistribution of Inflammasome-Targeting Nanoligomer in the Brain and Other Target Organs

Author:

Risen Sydney,Kusick Breonna,Sharma Sadhana,Gilberto Vincenzo S.,Brindley Stephen,Aguilar Mikayla,Brown Jared M.,McGrath Stephanie,Chatterjee Anushree,Moreno Julie A.,Nagpal Prashant

Abstract

ABSTRACTImmune malfunction or misrecognition of healthy cells and tissue, termed autoimmune disease, is implicated in more than 80 disease conditions and multiple other secondary pathologies. While pan-immunosuppressive therapies like steroids offer some relief for systemic inflammation for some organs, many patients never achieve remission and such drugs do not cross the blood-brain barrier making them ineffective for tackling neuroinflammation. Especially in the brain, unintended activation of microglia and astrocytes is hypothesized to be directly or indirectly responsible for Multiple Sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), Parkinson’s Disease (PD), and Alzheimer’s Disease (AD). Recent studies have also shown that targeting inflammasome and specific immune targets can be beneficial for these diseases. Further, our previous studies have shown targeting NF-κB and NLRP3 through brain penetrant Nanoligomer cocktail SB_NI_112 (abbreviated to NI112) can be therapeutic for several neurodegenerative diseases. Here we show safety-toxicity studies, followed by pharmacokinetics (PK) and biodistribution in small- (mice) and large-animal (dog) studies of this inflammasome-targeting Nanoligomer cocktail NI 112. We conducted studies using four different routes of administration: intravenous (IV), subcutaneous (SQ), intraperitoneal (IP), and intranasal (IN), and identified the drug concentration over time using inductively coupled plasma mass spectrometry (ICP-MS) in the blood serum, the brain (including different brain regions), and other target organs like liver, kidney, and colon. Our results indicate the Nanoligomer cocktail has a strong safety profile, and shows high biodistribution (F ∼0.98) and delivery across multiple routes of administration. Further analysis showed high brain bioavailability with a ratio of NI112 in brain tissue to blood serum ∼30%. Our model accurately shows dose scaling, translation between different routes of administration, and interspecies scaling. These results provide an excellent platform for human clinical translation and predicting therapeutic dosage between different routes of administration.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3