Eph/ephrin signalling in the developing brain is regulated by tissue stiffness

Author:

Sipkova Jana,Franze KristianORCID

Abstract

SummaryEph receptors and their membrane-bound ligands, ephrins, provide key signals in many biological processes, such as cell proliferation, cell motility and cell sorting at tissue boundaries. However, despite immense progress in our understanding of Eph/ephrin signalling, there are still discrepancies betweenin vitroandin vivowork, and the regulation of Eph/ephrin signalling remains incompletely understood. Since a major difference betweenin vivoand mostin vitroexperiments is the stiffness of the cellular environment, we here investigated the interplay between tissue mechanics and Eph/ephrin signalling using theXenopus laevisoptic pathway as a model system.Xenopusretinal neurons cultured on soft substrates mechanically resembling brain tissue showed the opposite response to ephrinB1 compared to those cultured on glass.In vivoatomic force microscopy (AFM)-based stiffness mapping revealed that the visual area of theXenopusbrain, the optic tectum, becomes mechanically heterogeneous during its innervation by axons of retinal neurons. The resulting stiffness gradient correlated with both a cell density gradient and expression patterns of EphB and ephrinB family members. Exposingex vivobrains to stiffer matrices or locally stiffening the optic tectumin vivoled to an increase in EphB2 expression in the optic tectum, indicating that tissue mechanics is an important regulator of Eph/ephrin signalling. Similar mechanisms are likely to be involved in the development and diseases of many other organ systems.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3