Author:
Gordon Laurie,Yang Shan,Tran-Gyamfi Mary,Baggott Dan,Christensen Mari,Hamilton Aaron,Crooijmans Richard,Groenen Martien,Lucas Susan,Ovcharenko Ivan,Stubbs Lisa
Abstract
The chicken genome draft sequence has provided a valuable resource for studies of an important agricultural and experimental model species and an important data set for comparative analysis. However, some of the most gene-rich segments are missing from chicken genome draft assemblies, limiting the analysis of a substantial number of genes and preventing a closer look at regions that are especially prone to syntenic rearrangements. To facilitate the functional and evolutionary analysis of one especially gene-rich, rearrangement-prone genomic region, we analyzed sequence from BAC clones spanning chicken microchromosome GGA28; as a complement we also analyzed a gene-sparse, stable region from GGA11. In these two regions we documented the conservation and lineage-specific gain and loss of protein-coding genes and precisely mapped the locations of 31 major human-chicken syntenic breakpoints. Altogether, we identified 72 lineage-specific genes, many of which are found at or near syntenic breaks, implicating evolutionary breakpoint regions as major sites of genetic innovation and change. Twenty-two of the 31 breakpoint regions have been reused repeatedly as rearrangement breakpoints in vertebrate evolution. Compared with stable GC-matched regions, GGA28 is highly enriched in CpG islands, as are break-prone intervals identified elsewhere in the chicken genome; evolutionary breakpoints are further enriched in GC content and CpG islands, highlighting a potential role for these features in genome instability. These data support the hypothesis that chromosome rearrangements have not occurred randomly over the course of vertebrate evolution but are focused preferentially within “fragile” regions with unusual DNA sequence characteristics.
Publisher
Cold Spring Harbor Laboratory
Subject
Genetics (clinical),Genetics
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献