Streamlined histone-based fluorescence lifetime imaging microscopy reveals ATM regulation of chromatin compaction

Author:

Sherrard Alice,Bishop Paul,Panagi Melanie,Villagomez Maria Beatriz,Alibhai Dominic,Kaidi Abderrahmane

Abstract

AbstractChanges in chromatin compaction are crucial during genomic responses. Thus, methods that enable such measurements are instrumental for investigating genome function. Here, we address this challenge by developing, validating, and streamlining histone-based fluorescence lifetime imaging microscopy (FLIM) that robustly detects chromatin compaction states in fixed and live cells; in 2D and 3D. We present quality-controlled and detailed method that is simpler and faster than previous approches, and uses FLIMfit open-source software. We demonstrate the versatility of our method through its combination with immunofluorescence and its implementation in immortalised cells and primary neurons. Owing to these developments, we applied this method to elucidate the function of the DNA damage response kinase, ATM, in regulating chromatin organisation after genotoxic-stress. We unravelled a role for ATM in regulating chromatin compaction independently of DNA damage. Collectively, we present an adaptable chromatin FLIM method for examining chromatin structure in cells, and establish its broader utility.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3