Author:
Delaby Marie,Panis Gaël,Fumeaux Coralie,Degeorges Laurence,Viollier Patrick H.
Abstract
AbstractThe signals feeding into bacterial S-phase transcription are poorly understood. Cellular cycling in the alpha-proteobacteriumCaulobacter crescentusis driven by a complex circuit of at least three transcriptional modules that direct sequential promoter firing during the G1, early and late S cell cycle phases. In alpha-proteobacteria, the transcriptional regulator GcrA and the CcrM methyltransferase epigenetically activate promoters of cell division and polarity genes that fire in S-phase. By evolvingCaulobacter crescentuscells to cycle and differentiate in the absence of the GcrA/CcrM module, we discovered that phosphate deprivation and (p)ppGpp alarmone stress signals converge on S-phase transcriptional activation. The cell cycle oscillations of the CtrA protein, the transcriptional regulator that implements G1 and late S-phase transcription, are essential in our evolved mutants, but not in wild-type cells, showing that the periodicity in CtrA abundance alone can sustain cellular cycling without GcrA/CcrM. While similar nutritional sensing occurs in other alpha-proteobacteria, GcrA and CcrM are not encoded in the reduced genomes of obligate intracellular relatives. We thus propose that the nutritional stress response induced during intracellular growth obviated the need for an S-phase transcriptional regulator.
Publisher
Cold Spring Harbor Laboratory